366 research outputs found

    The Chern-Simons diffusion rate in strongly coupled N=4 SYM plasma in an external magnetic field

    Full text link
    We calculate the Chern-Simons diffusion rate in a strongly coupled N=4 SUSY Yang-Mills plasma in the presence of a constant external U(1)RU(1)_R magnetic flux via the holographic correspondence. Due to the strong interactions between the charged fields and non-Abelian gauge fields, the external Abelian magnetic field affects the thermal Yang-Mills dynamics and increases the diffusion rate, regardless of its strength. We obtain the analytic results for the Chern-Simons diffusion rate both in the weak and strong magnetic field limits. In the latter limit, we show that the diffusion rate scales as B×T2B\times T^2 and this can be understood as a result of a dynamical dimensional reduction.Comment: 10 pages, 1 figure, typos corrected, comments adde

    Conformal anomaly as a source of soft photons in heavy ion collisions

    Get PDF
    We introduce a novel photon production mechanism stemming from the conformal anomaly of QCDxQED and the existence of strong (electro)magnetic fields in heavy ion collisions. Using the hydrodynamical description of the bulk modes of QCD plasma, we show that this mechanism leads to the photon production yield that is comparable to the yield from conventional sources. This mechanism also provides a significant positive contribution to the azimuthal anisotropy of photons, v2v_2, as well as to the radial "flow". We compare our results to the data from the PHENIX Collaboration.Comment: 5 pages, 3 figures; version accepted to Phys. Rev. Let

    Attainability in Repeated Games with Vector Payoffs

    Get PDF
    We introduce the concept of attainable sets of payoffs in two-player repeated games with vector payoffs. A set of payoff vectors is called {\em attainable} if player 1 can ensure that there is a finite horizon TT such that after time TT the distance between the set and the cumulative payoff is arbitrarily small, regardless of what strategy player 2 is using. This paper focuses on the case where the attainable set consists of one payoff vector. In this case the vector is called an attainable vector. We study properties of the set of attainable vectors, and characterize when a specific vector is attainable and when every vector is attainable.Comment: 28 pages, 2 figures, conference version at NetGCoop 201

    Holographic Pomeron and the Schwinger Mechanism

    Get PDF
    We revisit the problem of dipole-dipole scattering via exchanges of soft Pomerons in the context of holographic QCD. We show that a single closed string exchange contribution to the eikonalized dipole-dipole scattering amplitude yields a Regge behavior of the elastic amplitude; the corresponding slope and intercept are different from previous results obtained by a variational analysis of semi-classical surfaces. We provide a physical interpretation of the semi-classical worldsheets driving the Regge behavior for (-t)>0 in terms of worldsheet instantons. The latter describe the Schwinger mechanism for string pair creation by an electric field, where the longitudinal electric field E_L=\sigma_T tanh(\chi/2) at the origin of this non-perturbative mechanism is induced by the relative rapidity {\chi} of the scattering dipoles. Our analysis naturally explains the diffusion in the impact parameter space encoded in the Pomeron exchange; in our picture, it is due to the Unruh temperature of accelerated strings under the electric field. We also argue for the existence of a "micro-fireball" in the middle of the transverse space due to the soft Pomeron exchange, which may be at the origin of the thermal character of multiparticle production in ep/pp collisions. After summing over uncorrelated multi-Pomeron exchanges, we find that the total dipole-dipole cross section obeys the Froissart unitarity bound.Comment: 17 pages, 4 figures, version 2: minor typos corrected, references adde

    Detecting event-related recurrences by symbolic analysis: Applications to human language processing

    Get PDF
    Quasistationarity is ubiquitous in complex dynamical systems. In brain dynamics there is ample evidence that event-related potentials reflect such quasistationary states. In order to detect them from time series, several segmentation techniques have been proposed. In this study we elaborate a recent approach for detecting quasistationary states as recurrence domains by means of recurrence analysis and subsequent symbolisation methods. As a result, recurrence domains are obtained as partition cells that can be further aligned and unified for different realisations. We address two pertinent problems of contemporary recurrence analysis and present possible solutions for them.Comment: 24 pages, 6 figures. Draft version to appear in Proc Royal Soc

    Multi-Layer Cyber-Physical Security and Resilience for Smart Grid

    Full text link
    The smart grid is a large-scale complex system that integrates communication technologies with the physical layer operation of the energy systems. Security and resilience mechanisms by design are important to provide guarantee operations for the system. This chapter provides a layered perspective of the smart grid security and discusses game and decision theory as a tool to model the interactions among system components and the interaction between attackers and the system. We discuss game-theoretic applications and challenges in the design of cross-layer robust and resilient controller, secure network routing protocol at the data communication and networking layers, and the challenges of the information security at the management layer of the grid. The chapter will discuss the future directions of using game-theoretic tools in addressing multi-layer security issues in the smart grid.Comment: 16 page

    A Gauge-Gravity Relation in the One-loop Effective Action

    Full text link
    We identify an unusual new gauge-gravity relation: the one-loop effective action for a massive spinor in 2n dimensional AdS space is expressed in terms of precisely the same function [a certain multiple gamma function] as the one-loop effective action for a massive charged scalar in 4n dimensions in a maximally symmetric background electromagnetic field [one for which the eigenvalues of F_{\mu\nu} are maximally degenerate, corresponding in 4 dimensions to a self-dual field, equivalently to a field of definite helicity], subject to the identification F^2 \Lambda, where \Lambda is the gravitational curvature. Since these effective actions generate the low energy limit of all one-loop multi-leg graviton or gauge amplitudes, this implies a nontrivial gauge-gravity relation at the non-perturbative level and at the amplitude level.Comment: 6 page

    Simulation modelling of chief officers’ working hours on short sea shipping

    Get PDF
    Short sea shipping poses significant problems for many seafarers, particularly for officers employed in oil tankers as chief officers. This study examines chief officers’ working conditions on short sea shipping. In this study, Simio simulation software was utilised to evaluate the working hours of chief officers. The results demonstrate that the rest periods of the chief officers have been less compromised as the navigation period increases in oil tankers operated on short sea shipping. To comply with the relevant regulations, a navigation period of 24–28 h is the minimum condition for an oil tanker to have a chief officer; however, an additional officer may be required for shorter voyages. The findings of the research provide some recommendations to maritime authorities to achieve safe short sea shipping
    • …
    corecore